

IGEEKS TECHNOLOGIES

Software Training Division

Academic Projects for BE, ME, MCA, BCA and PHD Students

IGEEKS Technologies (Make Final Year Project)

No: 19, MN Complex, 2nd Cross, Sampige Main Road, Malleswaram, Bangalore- 560003. Phone No: 080-32487434 /9590544567/9739066172 Mail: trai<u>ning@Igeekstechnologies.com,nanduigeeks2010@gmail.com</u> Website: www.igeekstechnologies.com,www.makefinalyearproject.com Land mark: Near to Mantri Mall, Malleswaram Bangalore

NS2 IEEE 2015 PROJECT LIST

1	Analysis of attacks on routing protocols in MANETs
2	A study on secure intrusion detection system in wireless MANETs to increase the
4	performance of Eaack
3	Security issues of black hole attacks in MANET
4	Securing TORA against Sybil attack in MANETs
5	Detection of gray hole in MANET through cluster analysis
6	Routing Protocols Analysis for Internet of Things
7	Power Control and Soft Topology Adaptations in Multihop Cellular Networks with multipoint connectivity
8	Scrutinizing Localized Topology Control in WSN using Rigid Graphs
9	Energy Efficient Coverage and Connectivity with Varying Energy Level in WSN
10	Home telehealth by Internet of Things (IoT)
11	Evaluating Wireless Reactive Routing Protocols with Linear Programming Model for Wireless Ad-hoc Networks
12	R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Networks
13	Autonomous Mobile Mesh Networks
14	A QoS-Oriented Distributed Routing Protocol for Hybrid Wireless Networks
15	Energy-Optimum Throughput and Carrier Sensing Rate in CSMA-Based Wireless Networks
16	PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad Hoc Networks
17	Secure Data Retrieval for Decentralized Disruption-Tolerant Military Networks
18	Hop-by-Hop Message Authentication and Source Privacy in Wireless Sensor Networks
19	Maximizing P2P File Access Availability in Mobile Ad hoc Networks Though Replication for Efficient File Sharing
20	Leveraging Social Networks for P2P Content-Based File Sharing in Disconnected MANETs
21	Performance Guaranteed Routing Protocols for Asymmetric Sensor Networks
22	Energy Efficiency And Better Throughput In MANET Using Improved AOMDV
23	Network lifetime enhanced tri-level clustering and routing protocol for monitoring of offshore wind farms
24	Attribute-Aware Data Aggregation Using Potential-Based Dynamic Routing in Wireless Sensor Networks
25	ESecRout: An Energy Efficient Secure Routing for Sensor Networks
26	Energy-Efficient Reliable Routing Considering Residual Energy in Wireless Ad Hoc Networks

IEEE NS2 Project List on WSN, MANETS, ROUTING, SECURITY and IOT

1	Mobile Sink-Based Adaptive Immune Energy- Efficient Clustering Protocol
	for Improving Lifetime and Stability Period of Sensor Networks
2	Tree Based Energy Efficient Routing Scheme for Body Area Network
3	On Routing and Spectrum Assignment in Rings
4	An Efficient Cluster-Tree Based Data Collection Scheme for Large Mobile
	Wireless Sensor Networks
5	Clustering Algorithms for Wireless Sensor Networks: A Review
6	Bandwidth-Aware High-Throughput Routing with Successive Interference
	Cancellation in Multihop Wireless Networks
7	A Greedy Algorithm in WSNs for Maximum Network Lifetime and
	Communication Reliability
8	An Analysis of the Overhead and Energy Consumption in Flooding,
	Random Walk and Gossip based Resource Discovery Protocols in MP2P
	Networks
9	Modeling and Analysis of WSN-Based Emergency Braking Control for
	High-Speed Trains
10	SystemC AMS Modeling of a Sensor Node Energy Consumption and
	Battery State-of-Charge for WSN
11	Experimental Analysis of AODV, DSDV and OLSR Routing Protocol
	for Flying Adhoc Networks (F ANETs)
12	A Survey based on Smart Homes System Using Internet-of-Things
13	Energy, Link Stability and Queue aware OLSR for Mobile Ad hoc Network
14	Evaluating Performance of OLSR Routing Protocol for Multimedia Traffic
	in MANET using NS2
15	Context-aware Computing in the Internet of Things: A Survey on Internet
	of Things From Industrial Market Perspective
16	Cooperative Black Hole Detection Mechanism in Mobile Ad Hoc Network
17	Sensor Mania! The Internet of Things, Wearable Computing, Objective
	Metrics, and the Quantified Self 2.0
18	Time-Reversal Wireless Paradigm for Green Internet of Things: An
	Overview
19	An extensive review: Internet of things is speeding up the necessity for 5G
20	Effect Analysis of Black Hole Attack of AODV Protocol in MANET using
	Table Driven Approach.
21	A Energy Efficient Approach to DSR based Routing Protocol for Ad Hoc
	Network
22	Comparison between Minimum Power Consumption and Minimum Battery
	Cost Routing for Energy Management in Wireless Ad Hoc Network

23	A Congestion Control Algorithm for Mobility Model in Mobile Ad-hoc
	Networks
24	Investigating the Impact of Black Hole Attack on AODV Routing Protocol
	in MANETS under Responsive and Non-Responsive Traffic
25	Detection of Black Hole Attack using Control Packets in AODV Protocol
	for MANET
26	A New Enhanced Energy Efficient Position based Routing Protocol for
	Mobile Adhoc Network
27	Enhance the Efficiency Routing between Mobile Nodes in MANET
	Networks
28	Improving the Life of the Wireless Sensor Network using Energy
	Harvesting Clustering.